On perfect deletion-correcting codes
نویسنده
چکیده
In this article we present constructions for perfect deletion-correcting codes. The first construction uses perfect deletion-correcting codes without repetition of letters to construct other perfect deletion-correcting codes. This is a generalization of the construction shown in [1]. In the third section we investigate several constructions of perfect deletioncorrecting codes using designs. In the last section we investigate perfect deletion-correcting codes containing few codewords.
منابع مشابه
Spectrum of Sizes for Perfect Deletion-Correcting Codes
One peculiarity with deletion-correcting codes is that perfect t-deletion-correcting codes of the same length over the same alphabet can have different numbers of codewords, because the balls of radius t with respect to the Levenshtĕın distance may be of different sizes. There is interest, therefore, in determining all possible sizes of a perfect t-deletion-correcting code, given the length n a...
متن کاملPerfect Byte-Correcting Codes
We present a few new constructions for perfect linear single byte-correcting codes. These constructions generate some perfect single byte-correcting codes with new parameters, and some perfect single bytecorrecting codes with known parameters and simpler presentation and implementation over the known codes. It is also shown that nonequivalent perfect linear single byte-correcting codes exist wh...
متن کاملOptimal codes in deletion and insertion metric
We improve the upper bound of Levenshtein for the cardinality of a code of length 4 capable of correcting single deletions over an alphabet of even size. We also illustrate that the new upper bound is sharp. Furthermore we will construct an optimal perfect code capable of correcting single deletions for the same parameters.
متن کاملOn multiple insertion/Deletion correcting codes
We investigate binary, number-theoretic, bit insertion/deletion correcting codes as pioneered by Levenshtein. The weight spectra and Hamming distance properties of single insertion/deletion error-correcting codes are analyzed. These relationships are then extended to investigate codes that can correct multiple random insertions and deletions. From these relationships, new bounds are derived and...
متن کاملThe partial order of perfect codes associated to a perfect code
It is clarified whether or not “full rank perfect 1-error correcting binary codes act like primes in the family of all perfect 1-error correcting binary codes”. Thereby the well known connection between perfect 1-error correcting binary codes and tilings will be discussed and used.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008